Polynomials

 Polynomials 



  • Polynomials:-

          Polynomials are the expressions which have variables and their coefficients ,and powers of variables must be always whole number.
Ex:- p(x)=x²+3x+4
Note:- powers of all variables of polynomials must be 0 or positive integers.
Example:- 3x‐²+2x+3 is not a polynomial 

Degree of polynomials 

The highest power of the polynomial is called the Degree of polynomial. 
Example:- p(x)=4x³+3x²+5x+1
                   Here the highest power of x is 3 so the Degree of polynomial is 3.
                   P(x)=100x+10
                   Here the highest power of x is 1 so the Degree of polynomial is 1
Note:-Degree of constant is 0
                   P(x)=100

Types of polynomials 

1. Linear polynomial 
2.quadratic polynomial 
3.cubic polynomial 

1. Linear polynomial:-

     If the Degree of the polynomial is 1 called linear polynomial. 
Example:- p(x):-3x+4
The general form of a linear polynomial is 
p(x)=ax+b
  • Linear will have only one solution 
  • Linear equation will give straight line graph 

  • Linear polynomial

2.quadratic polynomial 

      If the Degree of polynomial is 2 then it called quadratic polynomial. 
Example:-p(x) =x²+3x+4
  • The quadratic polynomials have 2 solutions ,As it has Degree 2.
  • The general form of quadratic polynomial is p(x)=ax²+bx+c
  • The graph of quadratic equation is parabola.
  • Test yourself

3. Cubic polynomial 

     If the Degree of polynomial is 3 then it called Cubic polynomial.
Example:- p(x)=5x³+2x+3
  • The cubic polynomial has 3 solutions 
  • The general form of cubic polynomial p(x)=ax³+bx²+cx+d

Points to find given expressions are polynomial or not

  • Power of given expressions always should positive integers or zero.
  • Example:-3x‐²+4x+3 is not a polynomial because it has negative power
  • Power of variables of given expressions must be rational.
  • Example:-`p(x)=5x^\sqrt3+3x+5`here the power of x is irrational number Therefore it is not a polynomial 
  • Variables should not be in denominator 
  • Example`p(x)=\frac2x+3x+1`here the Variable x is in denominator there it is not a polynomial 
  • Variable should not be irrational number
  • Example:-`p(x)=\sqrt x+2x+1`here the Variable is under root it is irrational, it is not a polynomial 

Finding value of polynomials 

1. Find value of polynomial `p(x)=x²+3x+2` If x=2
Sol. `p(x)=x^2+3x+2`
         `p(x)=2^2+3(2)+2`
           `p(x)=4+6+2`
              `p(x)=12`
2. Find value of polynomial p(x)=3x²+9x+6 if it's zeroes are 1 and 2
Sol. If x=1
        p(x)=3x²+9x+6
        P(1)=3(1)²+9(1)+6
        P(1)=3+9+6
        P(1)=18

Finding zero of polynomial 

1. Find zero of polynomial p(x)=3x+1.
Sol. p(x)=3x+1
         0 = 3x+1
         3x=-1
          x=`-frac(1)2`
2. Find zero of polynomial p(x)=5x
Sol. p(x)=5x
        0=5x
        x =`frac(0)5`
        x=0
3. Find zeroes of polynomial p(x)=x²+4x+4
Sol. x²+4x+4=0
       x²+2x+2x+4=0 
       x(x+2)+2(x+2)=0
       (x+2)(x+2)=0
        x+2=0. Or x+2=0
        x=-2.   Or  x=-2
4. Find zeroes of p(x]=x²+7x+10
Sol. x²+7x+10=0
       x²+5x+2x+10=0
       x(x+5)+2(x+5)=0
       (x+5)(x+2)=0
         x+5=0. Or.  x+2=0
         x=-5.    Or.   x=-2


To be continued:


Post a Comment

0 Comments